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Duality-Induced Reflections and CPT

Heinrich Saller1
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The linear particle–antiparticle conjugation C and position space reflection P as
well as the antilinear time reflection T are shown to be inducible by the self-
duality of representations for the operation groups SU(2), SL(C2), and R for
spin, Lorentz transformations, and time translations, respectively. The definition
of a color-compatible linear CP-reflection for quarks as self-duality induced is
impossible since triplet and antitriplet SU(3)-representations are not linearly
equivalent.

1. REFLECTIONS

1.1. Reflections

A reflection will be defined to be an involution of a finite-dimensional
vector space V

V }
R

V, R + R 5 idV ⇔ R 5 R21

i.e., a realization of the parity group2 I(2) 5 {61} in the V-bijections which
is linear for a real space and may be linear or antilinear for a complex space

R(v 1 w) 5 R(v) 1 R(w), R(av) 5 HaR(v) for a P R or C (linear)
aR(v) for a P C (antilinear)

An antilinear reflection for a complex space V > Cn is a real linear one for
its real forms V > R2n.

The inversion of the real numbers a } 2a is the simplest nontrivial
linear reflection, and the canonical conjugation a } a is the simplest nontrivial

1 Max-Planck-Institut für Physik and Astrophysik, Werner-Hoisenberg-Institut für Physik,
Munich, Germany.

2 Since the parity group is used as multiplicative group, I do not use the additive notation Z2 5
{0, 1}.
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antilinear one, being a linear one of C considered as real 2-dimensional space
C 5 R % iR.

Any (anti)linear isomorphism i: V → W of two vector spaces defines
an (anti)linear reflection of the direct sum

V % W R–r
i%i21

V % W

which will be denoted in brief also by V }
i

W.

1.2. Mirrors

The fixpoints of a linear reflection V 1
R 5 {v.R(v) 5 v}, i.e., the elements

with even parity, in an n-dimensional space constitute a vector subspace, the
mirror for the reflection R, with dimension 0 # m # n, with the complement
V 2

R 5 {v.R(v) 5 2v}, i.e., the elements with odd parity, for the direct
decomposition V 5 V 1

R % V 2
R . The central reflection R 5 2idV has the origin

as a 0-dimensional mirror. Linear reflections are diagonalizable,

R > 11m 0
0 21n2m2

with (m, n 2 m) the signature characterizing the degeneracy of 61 in the
spectrum of R. Conversely, any direct decomposition V 5 V + % V 2 defines
two reflections with the mirror either V + or V 2.

With (det R)2 5 1 any linear reflection has either a positive or a negative
orientation. Looking in a 2-dimensional bathroom mirror is formalized by
the negatively oriented 3-space reflection (x, y, z) } (2x, y, z). The position-
space R3 reflection

›
x }

213
2

›
x with negative orientation or the Minkowski

spacetime translation R4 reflection x }
214

2x with positive orientation are
central reflections with the origins ‘here’ and ‘here-now’ as point mirrors.
A space reflection (x0,

›
x ) }

P
(x0, 2

›
x ) in Minkowski space or a time reflection

(x0,
›

x ) }
T

(2x0,
›

x ) both have negative orientation with a 1-dimensional time
and 3-dimensional position space mirror, respectively.

1.3. Reflections in Orthogonal Groups

A real linear reflection

R > 11m 0
0 21n2m2

can be considered to be an element of an orthogonal group O( p, q) for any3

3 The orthogonal signature ( p, q) has nothing to do with the reflection signature (n, m).
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( p, q) with p 1 q 5 n. A positively oriented reflection, det R 5 1, is an
element even of the special orthogonal groups, R P SO( p, q), p 1 q $ 1.

Orthogonal groups have discrete (semi)direct factor parity subgroups
I(2), as seen in the simplest compact and noncompact examples

O(2) { 1e cos a e sin a
2sin a cos a 2, e P I(2) 5 {61}, a P [0, 2p[

O(1,1) { e81e cosh b e sinh b
sinh b cosh b 2, e, e8 P I(2), b P R

In general, the classes of a real orthogonal group with respect to its special
normal subgroup constitute a reflection group

O( p, q)/SO( p, q) > I(2)

For real, odd-dimensional spaces V, e.g., for position space R3, one has direct
products of the special groups with the central reflection group, whereas for
even-dimensional spaces, e.g., a Minkowski space R4, there arise semidirect
products (denoted by

›
3 ) of the special group with a reflection group which

can be generated by any negatively oriented reflection,

O( p, q) > 5
I(2) 3 SO( p, q), p 1 q 5 1, 3, . . . ,

I(2) > {6idV}
I(2)

›
3 SO( p, q), p 1 q 5 2, 4, . . .

I(2) > {R, idV} with det R 5 21

In the semidirect case the product is given as follows:

(I, L) P I(2)
›

3 SO ( p, q) ⇒ (I1, L1) (I2, L2) 5 (I1 + I2, L1 + I1 + L2 + I1)

Obviously, in the semidirect case the reflection group I(2) is not compatible
with the action of the (special) orthogonal group,

p 1 q 5 2, 4, . . . , det R 5 21 ⇒ [R, SO( p, q)] Þ {0}

For example, the group O(2) is nonabelian, or a space reflection and a time
reflection of Minkowski space is not Lorentz group SO(1, 3)-compatible.

For noncompact orthogonal groups there is another discrete reflection
group: The connected subgroup G0 (unit connection component and Lie
algebra exponent) of a Lie group G is normal with a discrete quotient group
G/G0. The connected components of the full orthogonal groups are those of
the special groups O0( p, q) 5 SO0( p, q). For the compact case they are the
special groups; for the noncompact ones, one has two components
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pq $ 1 ⇒
SO0(n) 5 SO(n)

SO( p, q)/SO0( p, q) > I(2)

Summarizing: A compact orthogonal group gives rise to a reflection
group I(2),

O(n) > H{61n} 3 SO(n), n 5 1, 3, . . .
I(2)

›
3 SO(n), n 5 2, 4, . . .

with I(2) > {R, 1n}, det R 5 21

a noncompact one to a reflection Klein group I(2) 3 I(2),

pq $ 1: O( p, q) > H{61p1q} 3 [I(2)
›

3 SO0( p, q)], p 1 q 5 3, 5, . . .
I(2)

›
3 [{61p1q} 3 SO0( p, q)], p 1 q 5 2, 4, . . .

with I(2) > {R, 1n}, det R 5 21

For a noncompact O( p, q) with p 5 1 the connected subgroup is the
orthochronous group, compatible with the order on the vector space V >
R11q, e.g., for Minkowski spacetime

O(1,3) > I(2)
›

3 [I(2) 3 SO0(1, 3)]

where the reflection Klein group can be generated by the central reflection
214 and a position-space reflection P

I(2) 3 I(2) > {P, 14} 3 {614} 5 {614, P, T 5 2P},

[SO0(1, 3), P] Þ {0}

P 5 1 l 0
0 2132, T 5 214 + P 5 121 0

0 132
Also, the connected subgroup SO0( p, q) may contain positively oriented

reflections, which are called continuous since they can be written as exponen-
tials R 5 el with an element of the orthogonal Lie algebra,4 l P log SO0( p,
q), e.g., the central reflections 212n P SO(2n) in even-dimensional Euclidean
spaces, e.g., in the Euclidean 2-plane. A negatively oriented reflection R of
a space V can be embedded as a reflection R % S with any orientation of a
strictly higher dimensional space V % W,

V }
R

V, det R 5 21

V % W }
R%S

V % W, det(R % S) 5 2 det S

4 log G denotes the Lie algebra of the Lie group G.
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where, for compact orthogonal groups on V and V % W, a reflection R % S
with det S 5 21 is a continuous reflection, i.e., a rotation. There are familiar
examples [2] for O(n) \ SO(n 1 1): Two L-shaped noodles lying with
opposite helicity on a kitchen table can be 3-space-rotated into each other,
or a left- and a right-handed glove are identical up to Euclidean 4-space
rotations. The embedding of the central position-space reflection into Min-
kowski spacetime can go into a positively or negatively oriented reflection
which are both not continuous, i.e., they are in the discrete Klein reflec-
tion group

213 \ 161 0
0 2132, {P, 214} , O(1, 3)/SO0(1, 3)

2. REFLECTIONS FOR SPINORS

The doubly connected groups SO(3) and SO0(1, 3) can be complex
represented via their simply connected covering groups SU(2) and
SL(C2),5 respectively,

SO(3) > SU(2)/{612}, SO0(1, 3) > SL(C2)/{612}

The reflection group {612} for the SO(3)-classes in SU(2) and the SO0(1, 3)-
classes in SL(C2) contains the continuous central C2-reflection 212 5
eips3 P SU(2).

2.1. The Pauli Spinor Reflection

The fundamental defining SU(2)-representation for the rotations acts on
Pauli spinors W > C2,

u 5 ei
›

a
›

s P SU(2) (Pauli matrices
›

s )

They have an invariant antisymmetric bilinear form (spinor ‘metric’)

e: W 3 W → C, e(cA, cB) 5 eAB 5 2eBA, A, B 5 1, 2

which defines an isomorphism with the dual6 space W T > C2 which is
compatible with the SU(2)-action—on the dual space as dual representation
ŭ (inverse transposed)

5 Throughout this paper the group SL(C2) is used as real 6-dimensional Lie group.
6 The linear forms V T of a vector space V define the dual product V T 3 V → C by (v, v) 5
v(v) and dual bases by ^ej , ek& 5 dk

j . Transposed mappings f : V → W are denoted by f T :
W T → V T with^ f T(v), v& 5 ^v, f (v)&.
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e
W →u

W
↓ ↓

W T →
ŭ

W T

e,

cA } eABc*B
ŭ 5 u21T 5 u*21 5 u 5 (e2i

›
a

›
s )T

u 5 e21 C ŭ C e
2

›
s 5 e21 C

›
sT C e

e connects the two Pauli representations with reflected transformations of
the spin Lie algebra log SU(2), i.e., it defines a central reflection for the
three compact rotation parameters

›
a ,

ei
›

a
›

s }
e

(e2i
›

a
›

s )T

i
›

a
›

s P log SU(2) > R3,
›

a }
e

2
›

a

and will be called the Pauli spinor reflection

W }
e

W T, cA } eABc*B , [e, SU(2)] 5 {0}

The mathematical structure of self-duality as a reflection generating
mechnism is given in the Appendix.

2.2. Reflections C and P for Weyl Spinors

The two fundamental SL (C2)-representations for the Lorentz group are
the the left- and right-handed Weyl representations on vector spaces WL ,
WR > C2 with the dual representations on the linear forms W T

L,R,

left: l 5 e(i
›

a 1
›

b )
›

a P SL(C2), right: l̂ 5 l21* 5 e(i
›

a 2
›

b )
›

s

left dual: ľ 5 l21T 5 [e(2i
›

a 2
›

b )
›

s ]T, right dual: lT* 5 l 5 [e(2i
›

a 1
›

b )
›

s ]T

The Weyl representations with dual bases in the conventional notations
with dotted and undotted indices7

left: lA P WL > C2, right: r Ȧ P WR > C2

left dual: r*A P WT
L > C2, right dual: l*A P W T

R > C2

are self-dual with the SL(C2)-invariant volume form on C2, i.e., the dual
isomorphisms are Lorentz-compatible,

ek

WL →l
WR

↓ ↓
W T

L →
ľ

W T
R

eL , eR

WR →l̂
WR

↓ ↓
W T

R →
l

W T
R

eR

For the Lorentz group the spinor ‘metric’ will prove to be related to the

7 The usual strange-looking crossover association of the letters l* and r* for right- and left-
handed dual spinors, respectively, will be discussed later.
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particle–antiparticle conjugation, and will be called Weyl spinor reflection,
denoted by C P {eL , eR},

WL }
c

W T
L, lA } eABr*B

WR }
c

W T
R, r Ȧ } eȦḂl*B

There exist isomorphisms d between left- and right-handed Weyl spinors,
compatible with the spin group action, but not with the Lorentz group SL(C2),

d

WL →
uL

WL

↓ ↓
WR →

uR
WR

d,
uL,R 5 ei

›
a

›
s P SU(2)

lA } dA
ȦrȦ

They connect representations with a reflected boost transformation, i.e., they
define a central reflection for the three noncompact boost parameters

›
b ,

e(i
›

a 1
›

b )
›

s }
d

e(i
›

a 2
›

b )
›

s

›
s

›
b P log SL(C2)/log SU(2) > R3,

›
b }

d
2

›
b

These isomorphisms induce nontrivial reflections of the Dirac spinors C P
WL % WR > C4,

C 5 1lA

rȦ2 }
d 1 0 dA

Ḃ

dȦ
B 0 21lB

rḂ2 5 g0C

with the chiral representation of the Dirac matrices

g j 5 1 0 š j

š j 0 2, s j 5 (12,
›

s ), š j 5 (12, 2
›

s )

and will be called Weyl spinor boost reflections P 5 d, later used for the
central position-space reflection representation,

WL }
P

WR , lA } dA
Ȧr Ȧ

W T
L }

P
W T

R, r*A } dȦ
Al*Ȧ

Therewith all four Weyl spinor spaces are connected to each other by
linear reflections,
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C
WL }

P
WR

] ]

W T
L }

P
W T

R

C,
[P, SL(C2)] Þ {0}, [P, SU(2)] 5 {0}
[C, SL(C2)] 5 {0}

3. TIME REFLECTION

The time representations define the antilinear reflection T for time trans-
lation. The different duality with respect to SL(C2) and Lorentz group repre-
sentations, on the one hand and time representations, on the other hand, leads
to the nontrivial C, P, T cooperation.

3.1. Reflection T of Time Translations

The irreducible time representations, familiar from the quantum mechan-
ical harmonic oscillator with time action eigenvalue (frequency) v, with their
duals (inverse transposed), are complex 1-dimensional,

t ° eivt P GL(U ), t ° e2ivt P GL(U T ), U > C > U T

They are self-dual (equivalent) with an antilinear dual isomorphism which
is the U(1)-conjugation for a dual basis u P U, u* P U T,

*
U →

eivt

U
↓ ↓

U T →
e2ivt U T

*, u } u*

The antilinear isomorphism ∗ defines a scalar product which gives rise to
the quantum mechanical probability amplitudes (Fock state for the har-
monic oscillator)

U 3 U → C, ^u.u& 5 ^u*, u& 5 1

and defines the time reflection T 5 ∗ for the time translations

eivt }
T

e2ivt, t }
T

2 t

3.2. Lorentz Duality versus Time Duality

As anticipated in the conventional, on first sight strange-looking, dual
Weyl spinor notation, e.g., l P WL and l* P W T

R, the Weyl spinor spaces
W T

L,R with the dual left- and right-handed SL(C2)-representations are not the
spaces with the dual time representations as exemplified in the harmonic
analysis of the left- and right-handed components in a Dirac field,
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lA(x) 5 # d 3q
(2p)3 s1q

m2
A

C

exiquC(
›

q ) 1 e2xiqa*C(
›

q )

!2

l*Ȧ(x) 5 # d 3q
(2p)3 s*1q

m2
C

Ȧ

e2xiqu*C(
›

q ) 1 exiqaC(
›

q )

!2

rȦ(x) 5 # d 3q
(2p)3 s*211q

m2
Ȧ

C

exiquC(
›

q ) 2 e2xiqa*C(
›

q )

!2

r*A(x) 5 # d 3q
(2p)3 s211q

m2
C

A

e2xiqu*C(
›

q ) 2 exiqaC(
›

q )

!2

s1q
m2 5 !q0 1 m

2m 11 1

›
s

›
q

q0 1 m2, q 5 (q0,
›q ), q0 5 !m2 1 ›q 2

Here, s(q/m) P SL(C2) is the Weyl representation of the boost from the rest
system of the particle to a frame moving with velocity ›q /q0 (solution of the
Dirac equation), uC and aC are the creation operators for particles and antiparti-
cles with spin 1/2 and opposite charge number 61 and third spin direction,
e.g., for electron and positron, u*C and a*C are the corresponding annihila-
tion operators.

Here, ∗ denotes the time representation dual U } U*, and T the Lorentz
representation dual W } W T (with spinor indices up and down), i:e., for the
four types of Weyl spinors

lA P WL R—–r
time dual

l*Ȧ P W T
R 5 W*L

Lorentz dual] ]Lorentz dual

r*A P W T
L 5 W*R R—–rtime dual

rȦ P WR

Time representation duality does not coincide with Lorentz group representa-
tion duality.

The antilinear time reflection [U(1)-conjugation] T 5 ∗ is compatible
with the action of the little group SU(2), not with the full Lorentz group,

WL }
T

W T
R, lA } dAȦl*Ȧ

WR }
T

W T
L, rȦ } dȦAr*A

J, [T, SL(C2)] Þ 0, [T, SU(2)] 5 0

3.3. The Cooperation of C, P, T in the Lorentz Group

It is useful to summarize the action of the linear Weyl spinor reflections
C (particle–antiparticle conjugation) and P (position-space central reflection)
and the antilinear time reflection T in the two types of commuting diagrams
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C
WL }

P
WR

] ]

W T
L }P W T

R

C with C
lA }

P
dA

ArȦ

] ]

eABr*B }P dAA
eAḂl*Ḃ

C

C
WL }

T
W T

R

] ]

W T
L }T WR

C with C
lA }

T
dAḂl*Ḃ

] ]

eABr*B }T dAḂeḂȦrȦ

C

with the compatibilities

[C, SL(C2)] 5 {0}, [P and T, SL(C2)] Þ {0}, [P and T, SU(2)] 5 {0}

[C, P] 5 0, [C, T ] 5 0, [P, T ] 5 0

The product CPT is an antilinear reflection of each Weyl spinor space,
e.g., for the left-handed spinors

WL }
CPT

WL , lA } dȦ
AeȦḂdḂBlB

involving an element of the group SL(C2), even of SU(2),

CPT , dA
ȦeȦḂdḂB 5 uA

B > 1 0 1
21 02 5 eips2/2 P SU(2) , SL(C2)

This element gives, in the used basis, for the Lorentz group a p-rotation
around the second axis in position space, i.e., a continuous reflection

SU(2) { eips2/2 ° 1
21 0 0
0 1 0
0 0 212 P SO(3), (x, y, z) } (2x, y, 2z)

The fact that the antilinear CPT-reflection is, up to a number conjugation
(indicated by overbar), an element of SL(C2), covering the connected Lorentz
group SO0(1,3), is decisive for the proof of the well-known CPT-theorem[4, 3]

CPT P SL(C2)

4. SPINOR-INDUCED REFLECTIONS

The linear spinor reflections e for Pauli spinors and C, P for Weyl
spinors are inducible on all irreducible finite-dimensional representations of
SU(2) and SL(C2) with their adjoint groups SO(3) and SO0(1, 3), respectively,
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via the general procedure: Given the group G action on two vector spaces,
its tensor product representation reads

G 3 (V1 ^ V2) → V1 ^ V2, g ● (v1 ^ v2) 5 (g ● v1) ^ (g ● v2)

A realization of the simple reflection group I(2) 5 {61} is either faithful
or trivial.

4.1. Spinor-Induced Reflection of Position Space

The reflection W }
e

W T for a Pauli spinor space W > C2 induces the
central reflection of position space whose elements come, in the Pauli repre-
sentation of position space, as traceless hermitian (2 3 2) matrices

›
x : W → W, tr

›
x 5 0,

›
x 5

›
x* 5 1 x3 x1 2 ix2

x1 1 ix2 2x3 2
i.e., as elements8 of the tensor product W ^ W T with the induced e-reflection

2
›

s 5 e21
0

›
s T

0e ⇒
›

x }
e

e21
0

›
x T

0e 5 2
›

x

In the Cartan representation the Minkowski spacetime translations are
hermitian mappings from right-handed to left-handed spinors,

x: WR → WL , x 5 x* 5 1 x0 1 x3 x1 2 ix2

x1 1 ix2 x0 2 x32
i.e., tensors in the product WL ^ W T

R. The linear CP-reflection for Weyl
spinors

WL }
CP

W T
R, WR }

CP
W T

L

induces the position-space reflection of Minkowski spacetime,

s j 5 (12,
›

s ), e21 C (s j)T C e 5 s j 5 (12 2
›

s )

x > (x0,
›

x ) }
CP

e21 C xT C e 5 1 x0 2 x3 2x1 1 ix2

2x1 2 ix2 x0 1 x3 2 > (x0, 2
›

x )

4.2. Induced Reflections of Spin Representation Spaces

All irreducible complex representations of the spin group SU(2) with
2J 5 0, 1, 2, . . . have an invariant bilinear form arising as a symmetric

8 The linear mappings {V → W } for finite-dimensional vector spaces are naturally isomorphic
to the tensor product W ^ V T with the linear V-formsV T.
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tensor product of the antisymmetric spinor ‘metric’ e. The bilinear form is
given for the irreducible representation [2J ] > ∨2J u on the vector space ∨2J

W > C2J11 by the corresponding totally symmetric9 power and is antisymmet-
ric for half-integer spin and symmetric for integer spin,

e2J 5 ~
2J

e, e2J(v, w) 5 H1e2J(w, v), 2J 5 0, 2, 4, . . .
2e2J(w, v), 2J 5 1, 3, . . .

The complex representation spaces for integer spin J 5 0, 1, . . . , acted
upon faithfully only with the special rotations SO(3) > SU(2)/{612}, are
direct sums of two irreducible real SO(3)-representation spaces R2J11 where
the invariant bilinear form is symmetric and definite, e.g., the negative-
definite Killing form 213 for the adjoint representation [2] > u ∨ u on R3.

The Pauli spinor reflection induces the reflections for the irreducible
spin representation spaces

V > ~
2J

W > C2J11: V }
e2J

V T

For integer spin (odd-dimensional representation spaces) the two real
subspaces with irreducible real SO(3)-representation come with a trivial
213 ° 12J11 and a faithful 213 ° 212J11 P O(2J 1 1)/SO(2J 1 1)
representation of the central position-space reflection, as seen in the diagonal-
ization of the induced reflection

1 0 e2J

[e2J]21 0 2 5 51
0
1

1
02 > 11

0
0

212, J 5 0

1 0
e21

e
02, J 5

1
2

1 0
213

213

0 2 > 113

0
0

213
2, J 5 1

etc.

The decomposition for the integer spin representation spaces uses sym-
metric and antisymmetric tensor products, as illustrated for the scalar and
vector spin representation with a Pauli spinor basis,

9 ~ and ` denote symmetrized and antisymmetrized tensor products.
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W }
e

WT, cA } eABc*B , J 5
1
2

W T ^ W }
e

W ^ W T, Hc*A ^ cA } cA ^ c*A , J 5 0
›

sA
B c*A ^ cB } 2

›
sA

B cB ^ c*A , J 5 1

Writing for the tensor (anti)commutator [a, b]e 5 a ^ b 1 eb ^ a with e 5
61, one has in both cases one trivial and one faithful reflection representation,

[c*A , cA]e } e[c*A , cA]e J 5 0

[c*A
›

sA
B, cB]e } 2e[c*A

›
sA

B, cB]e, J 5 1

4.3. Induced Reflections of Lorentz Group Representation Spaces

The generating structure of the two Weyl representations induces C, P-
reflections of SL(C2)-representations spaces.

The complex finite-dimensional irreducible representations of the group
SL(C2) are characterized by two spins [2L.2R] with integer and half-integer
L, R 5 0, 1/2, 1, . . . . They are equivalent to the totally symmetric products
of the left- and right-handed Weyl representations

Weyl left: [1.0] 5 l 5 e(i
›

a 1
›

b )
›

s , Weyl right: [0.1] 5 l̂ 5 e(i
›

a 2
›

b )
›

s

[2L.2R] > ~
2L

l ^ ~
2R

l̂ acting on V > ~
2L

WL ^ ~
2R

WR > C(2L11)(2R11)

[2L.2R] and [2R.2L] are equivalent with respect to the subgroup SU(2)-
representations. The induced reflections are given by the corresponding prod-
ucts of the Weyl spinor reflections.

The real representation spaces for the Lorentz group SO0(1, 3) are
characterized by integer spin

L 1 R 5 0, 1, 2, . . .

They are all generated by the Minkowski representation [1.1] > l ^ l,
where the complex 4-dimensional representation space is decomposable into
two real 4-dimensional ones, a hermitian and an antihermitian tensor,

C4 > WL ^ W T
R { l ^ l* 5 z 5 x 1 ia P R4 ^ iR4

With Weyl spinor bases the induced linear reflections for the Minkowski
representation look as follows [with s j 5 (12,

›
s ) 5 š j and s j 5 (12, 2

›
s )

5 š j]:

s j }
P

šT
j , l*s jl }

P
r*šT

j r

s j }
C

šT
j , l*s j l }

C
r šT

j r*
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s j }
CP

sT
j , l*s jl }

CP
lsT

j l*, r*š jr }
CP

ršT
j r*

and can be arranged in combinations of definite parity, e.g., for P with Dirac
spinors in a vector Cg jC and an axial vector Cg jg5C. The antilinear time
reflection has to change in addition the order in the product,

s j }
T

sj , l*s jl }
T

l*sjl, r*š jr }
T

r*šjr

4.4. Reflections of Spacetime Fields

A field F is a mapping from position space R3 or, as relativistic field,
from Minkowski spacetime R4 with values in a complex vector space V with
the action of a group G both on space(time) and on V. This defines the action
of the group on the field F ° g ● F 5 gF by the commutativity of the diagram

F
R3, R4 →O(g)

R3, R4

↓ ↓
V →

D(g)
V

gF, gF(x) 5 D(g)F(O(g21).x) for g P G

For position space the external action group is the Euclidean group O(3)
›

3 R3, for Minkowski spacetime the Poincaré group O(1, 3)
›

3 R4. The value
space may have additional integral action groups, e.g., U(1), SU(2), and
SU(3) hypercharge, isospin, and color, respectively in the standard model for
quark and lepton fields.

For Pauli spinor fields on position space the O(3)-action has a direct
SU(2)-factor and a reflection factor I(2),

c: R3 → W > C2,

Huc(
›

x ) 5 D(u)c (O(u21).
›

x ), u P SU(2), O(u) P SO(3)

cA(
›

x ) }
e

eABc*B(2
›

x ), position reflection I(2)

Spacetime fields have the Lorentz group behavior

lF(x) 5 D(l).F(O(l21).x), l P SL(C2), O(l) P SO0(1, 3)

The antilinear time reflection uses the conjugation to the time dual field

F(x0,
›

x ) }
T

F*(2x0,
›

x )

The reflections for Weyl spinor fields on Minkowski spacetime are
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1A(x0,
›

x ) }
P

dA
ArȦ (x0, 2

›
x )

(lA, rȦ) (x0,
›

x ) }
C

(eAB r*B , eȦḂl*Ḃ) (x0,
›

x )

(lA, rȦ) (x0,
›

x ) }
CP

(dA
AeȦḂl*Ḃ , dȦ

AeABr*B) (x0, 2
›

x )

(lA, rȦ) (x0,
›

x ) }
T

(dAȦl*Ȧ , dȦAr*A) (2x0,
›

x )

which is inducible on product representations.

5. THE STANDARD MODEL BREAKDOWN OF P AND CP

A relativistic dynamics, characterized by a Lagrangian for the fields
involved, may be invariant with respect to an operation group G, e.g., the
C, P, and T reflections, or not. A breakdown of the symmetry can occur in
two different ways: Either the symmetry is represented on the field value
space V, but the Lagrangian is not G-invariant, or there does not even exist
a G-representation on V. Both cases occur in the standard model for quark
and lepton fields.

5.1. Standard Model Breakdown of P

The charge U(1) vertex in electrodynamics for a Dirac electron–positron
field C interacting with an electromagnetic gauge field Gj

2Gj CgjC 5 2Gj (l*sjl 1 r*šjr)

is invariant under P and T if the fields have the Weyl spinor-induced behavior
given above.

In the standard model of leptons [5] with a left-handed isospin doublet
field L and a right-handed isospin singlet field r the hypercharge U(1) and
isospin SU(2) vertex with gauge fields Aj and

›
B j, respectively, and internal

Pauli matrices
›

t reads

2Aj1L*sj 12

2
L 1 r*sjr2 1

›
B jL*sj

›
t
2

L

All gauge fields are assumed with the spinor-induced reflection behavior.
The P-invariance is broken in two different ways: One component of the

lepton isodoublet, e.g., 1 5
1
2

(1 2 t3)
2

L P W2
L > C2, can be used together

with the right-handed isosinglet r as a basis of a Dirac space C P W2
L %

WR > C4 with a representation of P. This is impossible for the remaining
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unpaired left-handed field
1
2

(1 1 t3)
2

L P W1
L > C2—here P cannot even

be defined. However, also for the left–right pair (l, r) the resulting gauge
vertex breaks position space reflection P invariance via the familiar neutral
weak interactions, induced by a vector field Zj arising in addition to the U(1)-
electromagnetic gauge field Gj ,

2
Aj 1 B3

i

2
l*s jl 2 Ajr*š jr 5 2GjCg jC 2 ZjCgig5C

with 1Gi

Zj
2 5

1
4 1 3

21
1
121Ai

B3
j
2

There is no parameter involved whose vanishing would lead to a P-
invariant dynamics.

5.2. GP-Invariance in the Standard Model of Leptons

The CP-reflection induced by the spinor ‘metric’

WL }
CP

W T
R, 1A } dA

ȦeȦḂl*Ḃ

WR }
CP

W T
L, rȦ } dȦ

AeABr*B

has to include also a linear reflection of internal operation representation
spaces in the case of Weyl spinors with nonabelian internal degrees of
freedom.

For isospin SU(2)-doublets this reflection is given by the Pauli isospinor
reflection discussed above and is denoted as internal reflection by I 5 e,

e
U →u

U
↓ ↓

U T →
ǔ

U T

e,

u P SU(2)(isospin)

ca }
I

eabc*b , a, b 5 1, 2
2

›
t 5 e21 +

›
tT + e

Therewith the linear GP-reflection as particle–antiparticle conjugation includ-
ing nontrivial isospin eigenvalues

G 5 IC, GP 5 ICP

reads for left-handed Weyl spinors and isospinors

WL ^ U }
GP

W T
R ^ U T, LAa } dA

ȦeȦḂeabL*Ḃb

The antilinear T-reflection uses the U(2)-scalar product
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U }* U T, U 3U → C, ^ca.cb& 5 dab

WL ^ U }
T

W T
R ^ UT , LAa } dABdabL*Bb

The isospin dual coincides with the time dual U T 5 U*.
In the product CPT there arises, in the basis chosen, an isospin

transformation eacdcb > eipt2/2 P SU(2),

WL ^ U }
ICPT

WL ^ U, LAa } dAḂ dḂBeac dcbLBb

decisive to prove the GPT-theorem with

ICPT e SU(2) 3 SL(C2)

With the spinor-induced reflection behavior for the gauge fields the standard
model for leptons, i.e., with internal hypercharge-isospin action, allows the
representation of GP and T with the gauge vertex above being GP- and
T-invariant.

5.3. CP-Problems for Quarks

If quark triplets and antitriplets which come with the dual defining SU(3)
representations are included in the standard model, an extended CP-reflection
has to employ a linear reflection g between dual representation spaces of
color SU(3), i.e., an SU(3)-invariant bilinear form of the representation space,

g
U →

D(u)
U

↓ ↓
U T →

Ď(u)
U T

g,
D: SU(3) → GL(U ) (color representation)
g21 + D(u)T + g 5 D(u21) for all u P SU(3)

The situation for isospin SU(2) and color SU(3) is completely different
with respect to the existence of such a linear dual isomorphism g: All irreduc-
ible SU(2)-representations [2T ] with isospin T 5 0, 1/2, 1, . . . have, up to
a scalar factor, a unique invariant bilinear form ~2Te as product of the spinor
‘metric’ discussed above.

That is not the case for the color representations. Some representations
are linearly self-dual, some are not.

The complex irreducible representations of SU(3) are characterized by
[N1, N2] with two integers N1,2 5 0,1,2, . . . . They arise from the two funda-
mental triplet representations, dual to each other and parametrizable with
eight Gell-Mann matrices

›
l :

triplet: [1, 0] 5 u 5 eig
›

l , antitriplet: [0, 1] 5 ǔ 5 u21T 5 (e2ig
›

l )T
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The SU(3)-representation [N1, N2] acts on vector space U with dim U 5
(N1 1 1)(N2 1 1)(N1 1 N2 1 2)

2
.

Dual representations have reflected integer values [N1, N2] } [N2, N1]. Only
those SU(3)-representations whose weight diagram is central reflection sym-
metric in the real 2-dimensional weight vector space (Appendix) have one,
and only one, SU(3)-invariant bilinear form[1], i.e., they are linearly self-
dual. Dual representations have weights which are reflections of each other,

weights [N1, N2] }
212

weights [N2, N1]

Therefore, one obtains as self-dual irreducible SU(3)-representations

weights[N1, N2] 5 2weights [N1, N2] ⇔ N1 5 N2 5 N

⇒ dim U 5 (N 1 1)3 5 1, 8, 27, . . .

For example, for the octet [1, 1] as adjoint SU(3)-representation, the Killing
form defines its self-duality.

A general remark (Appendix): The Lie group SL(Cr11) with its maximal
compact subgroup SU(r 1 1) of rank r is defined as invariance group of the
Cr11-volume elements, which are totally antisymmetric (r 1 1)-linear forms
ea1???ar11. Their complex, finite-dimensional, irreducible representations are
characterized by r integers [N1, . . . , Nr] with the dual representations having
the reflected order [Nr , . . . , N1]. The weights (eigenvalues) for dual represen-
tations are related to each other by the central weight space reflection 21r

which defines the linear particle–antiparticle conjugation I for SU(n). Only
for n 5 2 [isospin SU(2)] are all representations [N 5 2T ] self-dual with
their invariant bilinear form arising from eab for [1]. The n 5 2 self-duality
of the doublet u(2) > ǔ(2) is replaced for n 5 3 by the equivalence of
antisymmetric triplet square and antitriplet representation u(3) ∧ u(3) > ǔ(3),
i.e., 3 ∧ 3 > 3, with the obvious generalization `ru(r 1 1) > ǔ(r 1 1) for
general rank r.

Obviously all SU(r 1 1)-representations have an invariant sesquilinear
form, the SU(r 1 1) scalar product. However, this antilinear structure cannot
define a linear particle–antiparticle conjugation.

It is impossible to define a CP-extending duality-induced linear GP-
reflection for the irreducible complex 3-dimensional quark representation
spaces since there does not exist a color SU(3)-invariant bilinear form of the
triplet space U > C3. Or equivalently: There does not exist a (3 3 3) matrix
g for the reflection 2

›
l 5 g21 +

›
lT + g of all eight Gell-Mann matrices.

Therewith there arise also problems to define an SU(3)-compatible time
reflection for quark triplet fields. Could all this be the reason for the breakdown
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of CP-invariance in the quark field sector and its parametrization (e.g.,
Cabibbo–Kobayashi–Maskawa) with three families of color triplets?

APPENDIX. CENTRAL REFLECTIONS OF LIE ALGEBRAS

A representation of a group G on a vector space V is self-dual if it is
equivalent to its dual representation, defined by the inverse transposed action
on the linear forms V T,

D: G → GL(V )
Ď: G → GL(V T)J, Ď(g) 5 D(g21)T

i.e., if the following diagram with a linear or antilinear isomorphism z: V →
V T commutes with the action of all group elements:

V →
D(g)

V
z↓ ↓z

V T →
Ď(g)

V T
, z21 + D(g)T + z 5 D(g21) for all g P G

Self-duality is equivalent to the existence of a nondegenerate bilinear (for
linear z) or sesquilinear form (for antilinear z) of the vector space V,

V 3 V → C, z(w, v) 5 ^z(w), v&

selfdual z(g ● w, g ● v) 5 z(w, v), g ● v 5 D(g)(v)

For the Lie algebra L 5 log G of a Lie group G with dual representations
in the endomorphism algebras AL(V ) and AL(V T) which are negative trans-
posed to each other

$: L → AL(V )
$̌: L → AL(V T)J, $̌(l) 5 2$(l)T

a self-duality isomorphism, i.e., the reflection V }
z

V T, fulfills

z(l ● w, v) 5 2z(w, l ● v), l ● v 5 $(l)(v)

and defines the central reflection of the Lie algebra in the representation

V →
$(l)

V
z↓ ↓z

V T →
$̌(l)

V T
, z21 + $(l)T + z 5 2$(l) for all l P log G

With Schur’s lemma, an irreducible complex finite-dimensional repre-
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sentation of a group or Lie algebra can have at most, up to a constant, one
invariant bilinear and one invariant sesquilinear form. For example, Pauli
spinors for SU(2) have both eAB (bilinear) and dAB (sesquilinear, scalar prod-
uct), A, B 5 1, 2, quark triplets have only a scalar product dab, a, b 5 1, 2,
3, and Weyl spinors for SL(C2) have only the bilinear ‘metric’ eAB.

For a simple Lie algebra L of rank r, the weights (eigenvalue vectors
for a Cartan subalgebra) of dual representations $ and $̌ are related to each
other by the central reflection of the weight vector space Rr,

weights $[L] }
21r

weights $̌[L]

which may be induced by a linear isomorphism z of the dual representation
spaces. Such a linear isomorphism for an L-representation exists [1] if, and
only if, the weights of the representation $: L → AL(V ) are invariant under
central reflection,

V }
z

V T ⇔ weights $[L] 5 2weights $[L]
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